
Blockchain and Privacy: Use Cases and
Architectures∗

Working Group on Blockchain and Privacy
Innovation Network for Finance IT

2019/01/07 at 13:19:08

Abstract

This project investigates how blockchain technology can be made con-
sistent with GDPR and provide a platform for auditable GDPR-compliant
personal information management. The present report contains concrete use
cases in this realm and preliminary architecture designs.

1 Introduction
In this report we examine concrete use cases of blockchain technologies in the con-
text of the GDPR. We focus on two cases: robust consent management between
controllers and data subjects (§ ??), and a system for education diploma manage-
ment (§ ??).

For the consent management use case, we demonstrate how blockchain concepts
can be used to facilitate core GDPR principles, and develop as system prototype
which allows controllers and data subjects to maintain a robust log of data usage
consent.

Our second use case is inspired by DiplomaSafe, an organization which currently
provides a service for issuing and verifying digital diplomas attesting to degree and
course completion. We develop a system which allows DiplomaSafe to partially
outsource its solution to a blockchain system thus ensuring that their service remains
valuable even in the case where DiplomaSafe discontinues operation. We analyze
the privacy implications of our solution and provide a legal argument for why our
design is compliant with the GDPR, despite the use of a public, permissionless
blockchain system.

2 Use Cases

2.1 Consent Management
The GDPR mandates that data controllers implement robust consent management
systems and integrate these into their operational setup.

Consent managements tasks include collecting consent from data subjects for
specific data processing tasks, allowing data subjects to manage consent (which
includes revocation), and facilitating audits (these may be private or public), to
demonstrate that all processing of personal data is backed by the active consent
from the affected data subjects. One challenge we foresee in consent management is
resolving disputes between data subjects (or organizations acting on their behalf)

∗Milestone 2 report (draft); for internal distribution only.

1



and controllers. In particular, a data subject should be empowered to contend that
a data processing step taken by a controller occurred without proper consent (e.g.,
the data subject never consented to the processing, or revoked consent before the
processing took place). In this case, a controller must demonstrate that consent
was given, or otherwise be subject to fines.

The naive solution of a controller using its own local records to demonstrate con-
sent however raises questions of integrity. In particular, the controller could simply
manufacture fraudulent consent records. In this report we explore decentralized
architectures that provide more robust solutions to dispute resolution.

2.2 DiplomaSafe Digital Diploma Management
DiplomaSafe, a Copenhagen-based start-up, provides a service for digital diploma
management.

In particular, DiplomaSafe allows schools, course providers, and other educa-
tional organizations to issue digital certificates to students to attest that the stu-
dents have completed a particular course or degree.

When a student demonstrates the digital diploma to an interested party (e.g.,
potential employer), the party can verify the legitimacy of the diploma with Diplo-
maSafe (which acts as a trusted intermediary in this case). In addition to issuing
diplomas and their verification, DiplomaSafe also provides the option to revoke
diplomas (in case a diploma has been issued by mistake, or the contents of the
diploma are incorrect, e.g., misspelled names, incorrect course information).

One problem an attestation service such as DiplomaSafe faces is assuring po-
tential customers that the service will remain available long enough to be valuable
and worth investing in. In a “naive” solution setting, should DiplomaSafe go out of
business, much of the service loses its value. In particular, it becomes impossible to
verify issued diplomas since DiplomaSafe is the only point of verification.

We investigate how cryptographic tools and blockchain technologies can be lever-
aged to ensure that all the assets created by DiplomaSafe remain valuable, even if
DiplomaSafe discontinues its operation, as well as ways to continue the service
without DiplomaSafe’s involvement.

In the context of this use case, we define the following entities.

• Issuer. An organization such as a school which provides courses to recipients,
i.e., students, and issues digital diplomas upon successful completion.

• Recipient. A natural person who has completed a course offered by an issuer
and holds a digital diploma attesting to this fact.

• Diploma. A document issued by an issuer towards a recipient attesting to
a qualification, e.g., course completion. A diploma identifies an issuer and a
recipient. A diploma can be in an active or a revoked state.

• Challenger. An organization or natural person requesting verification of a
diploma.

• Diploma Management Service (DPS). A service which implements the
following functionalities:

– Issuing. Allows an issuer to issue a diploma to a recipient such that the
diploma can later be verified.

– Verification. Allows a challenger holding a diploma to verify that the
diploma is valid, i.e., issued by the issuer to the recipient as identified
on the diploma, and in an active state.

2



– Revocation. Allows an issuer of an active diploma to mark it as revoked.
– Storage. Allows a recipient to store and retrieve a diploma issued to

them.

• Facilitator The entity maintaining and operating the DPS (currently Diplo-
maSafe).

Our aim is to extend DiplomaSafe’s current DPS such that (i) all diplomas
issued via the DPS can still be verified without direct involvement of DiplomaSafe
(i.e., remain useful should DiplomaSafe discontinue its operation), and (ii) this is
achieved without falling back on burdening the individual issuers with manually
verifying each diploma upon a request from a challenger.

To this end, we develop the following architecture.

2.2.1 DiplomaSafe Extended Architecture

In order to make the DPS operable without DiplomaSafe’s continued involvement,
we leverage a public, permissionless blockchain system, in particular the Ethereum
platform.

At a high level, every time a new diploma is issued, the issuer hashes it first
and commits the result to the Ethereum platform. Since the transaction is signed
by the issuer this serves as an immutable record of the fact that the issuer (as
identified by the public key used for the transaction) issued the diploma. To verify
the authenticity of a given diploma, a challenger can simply hash it and further
verify that the same hash exists on the Ethereum platform. This workflow does not
require the active participation of any single facilitator, i.e., DiplomaSafe (barring
the initial system setup which we discuss later).

We note that a diploma constitutes personal data and as such falls under the
GDPR. Since the hash of each diploma is uploaded to the Ethereum platform it
becomes accessible to the public. To ensure that the hash does not leak information
about the diploma (via a brute-force attack), the issuer embeds a random nonce in
the diploma before hashing (a fresh nonce is generated for each issued diploma).
Intuitively, this makes it infeasible for an attacker to derive any personal information
from a given hash without holding the diploma that produced it. As such, we argue
that the hash in isolation constitutes anonymous data and thus falls outside the
scope of the GDPR. We further expand on this in Section 2.2.2.

To handle revocation, the hash is augmented with a flag indicating whether it
is active or not. To revoke a diploma, an issuer creates a new transaction which
updates the flag.

Further we outline a concrete system based on the above ideas.

Prototype System. In our prototype system, the functionality of the DPS is
distributed across DiplomaSafe and the Ethereum platform, where DiplomaSafe acts
as a facilitator and handles diploma storage and issuer administration (e.g., new
issuer registration). DiplomaSafe furthermore provides software for creating well-
formatted digital diplomas, which includes generating and embedding a random
nonce in each diploma during creation.1

An Ethereum contract implements diploma digest upload, verification, and re-
vocation.

The data structures used in the smart contract are as follows.

• Issuers. A list of public addresses associated with issuers, along with addi-
tional details (e.g., organization name) about each issuer.

1By default, DiplomaSafe offers this software as a web service but should it discontinue opera-
tion, DiplomaSafe will first distribute the software to all issuers for local deployment and use.

3



• Diploma Digests. A list of digital diploma digests. Each digest is ac-
companied by a flag indicating whether the diploma is active or revoked, a
timestamp, and the public address of the issuer who issued the diploma.

The smart contract provides the following functionality.

• Issuer Registration. Each issued diploma is uniquely tied to an issuer via a
public Ethereum address associated with the issuer. Before using the system,
an issuer creates an Ethereum private key and a public address and registers
it with DiplomaSafe. DiplomaSafe adds the issuer’s address and associated
contact details to the Issuers list.

• Issuing. To issue a diploma, an issuer uses the diploma creation service to
construct a valid diploma. This generates a string s = d|n where d is the tex-
tual representation of the diploma, n is a random nonce, and | denotes string
concatenation. The issuer hashes s locally to obtain digest h and uploads h
via the smart contract which creates a new timestamped entry in the Diploma
Digest list.

• Verification. Given a diploma s, a challenger hashes it and verifies via the
smart contract that the Diploma Digests list contains the resulting digest with
an active flag and the correct issuer.

• Revocation. To revoke a diploma with digest h and issuer I, issuer I locates
the entry in the Diploma Digests with digest h and updates its flag from active
to revoked. The contract enforces that only the original creator of a digest
can update its state flag.

As previously noted, the digital diplomas themselves are stored with Diplo-
maSafe as well as locally with issuers, recipients, and challengers, i.e., off-chain.

2.2.2 GDPR Compliance Discussion

The above use case and architecture center around handling personal data while
also leveraging a public, permissionless blockchain system.

As such, it is crucial to analyze the validity, and legality, of the proposed de-
ployment. Currently, there is much contention around blockchain technologies and
whether these can be operated in a way that is compliant with the GDPR. In this
section we argue that the deployment proposed above is a positive illustration of a
GDPR-compliant system, despite its use of a public, permissionless blockchain. To
solidify this claim, we tie together legal and technical analyses.

Available Literature and Analysis. We first summarize and discuss available
literature pertaining to the deployment. In particular, we include working group
opinions and recommendations regarding blockchain technologies and cryptographic
techniques and their relation to the GDPR. We focus primarily on cryptographic
hashing and data anonymization as these are especially relevant to the DiplomaSafe
use case.

In "Blockchain and GDPR" [Blo18], a thematic report prepared by The Euro-
pean Union Blockchain Observatory and Forum, it is stated that hashed personal
data is a grey area. It is important to note that, as of yet, this matter has not been
settled by the European Data Protection Board (before known as art. 29 Working
Party or by any other data protection authorities or in court).
expand on text below

[Art14] discusses anonymization and states that any form of hashing only achieves
pseudonymisation.

4



Cryptographic Hashing and Anonymization under the GDPR. While
it is generally accepted, that an immutable public, permissionless blockchain is
inherently at odds with the principles set out in relevant data protection legislation
and namely the GDPR, it becomes increasingly difficult to imagine the viability of
blockchain and distributed ledger technologies, if we are to accept that technology
hash functions de facto are viewed only as pseudonymous and therefore subject to
GDPR.

When taking the criteria for anonymization into account and with an outset in
the DiplomaSafe use case, it is imperative to keep the objective of the rules in mind,
namely that of "protecting individuals". As set out in Opinion 4/2007 by the Work-
ing Group, it is brought forward that, "The scope of application of the Directive
excludes a number of activities, and flexibility is embedded in the text to provide
an appropriate legal response to the circumstances at stake" while maintaining that
"the scope of the data protection rules should not be overstretched".

A key aspect of our solution is applying a cryptographic hash function to create
a digest, i.e., a digital signature, of a diploma, and uploading this digest to a public,
permissionless blockchain.

According to the working group’s assessment, any form of hashing can at most
produce pseudonymous data which would render making the digest publically avail-
able a violation of the GDPR.

However, we argue that the carefully tailored usage of a hash function, in the con-
text of this specific use case, provides security guarantees that are in fact as strong as
any possible form of generalization or randomization (methods of anonymization),
which in turn implies that if anonymization is to be achievable at all, hashing—under
certain conditions—must in fact achieve it.

As the working group article points out, mere hashing is not sufficient to protect
against inference, since the output of the hash function can be used in a brute-
force attack. An attacker attempting to recover a student’s personal data could
enumerate all realistic guesses at the content of the student’s diploma, create validly
formatted diplomas from these guesses, and verify if any of these produce the desired
hash, thus breaching the student’s privacy.

This is why we strengthen the hashing approach by embedding, in each diploma,
a sufficiently long random string, which we refer to as a nonce. We emphasize that
a new nonce is generated for each diploma. In that sense, the approach is akin to a
keyed hash, however each diploma has a unique key and furthermore, the key does
not exist separately from the diploma.

This additional security guard makes a brute-force attack infeasible since the
attacker would have to guess a (arbitrarily long) random string in order to use the
enumeration approach described previously. The computational effort required in
this case is exponential in the bit length of the random nonce and as such pro-
hibitively high for sufficiently long nonces.

The only other ways in which an attacker can carry out an inference attack
is either by breaking the underlying hash function (in particular, finding a way
to invert it) or by obtaining the nonce associated with the diploma. Inverting a
cryptographic hash function, when the input domain is sufficiently large, goes far
beyond reasonable effort. We note that while it is possible that practical collision
attacks might surface for state-of-the-art cryptographic hash functions, these do not
lead to inference attacks in our case. An actual inversion is necessary to recover
the input. Even for hash functions where practical collision attacks do exist, e.g.,
MD5, inversion attacks over large input domains do not. As such it is unrealistic to
anticipate such attacks on current state-of-the-art hash functions such as SHA256.

The second potential inference attack requires the attacker to first obtain the
random nonce embedded in a given diploma. However, by design, the nonce is never
stored separately from the diploma itself. Therefore, an attacker can only obtain the

5



nonce by obtaining a copy of the diploma. This implies that any inference attack
on the diploma via the uploaded digest is obsolete since the attacker must already
hold the actual diploma. In turn, this means that making the digest of the diploma
publically available does not introduce a new attack vector.

It follows then that, in any practical scenario, the digest in isolation (without
a valid nonce) does not hold any additional information an attacker can exploit to
infer personal data. As such, the digest must constitute anonymous data.

To further substantiate the claim that the above hashing approach offers proper
means of anonymization we briefly contrast it with the two candidate approaches to
anonymization the working group Opinion 5 article mentions, namely generalization checkcheck
and randomization.
generalization and randomization

Overall System Compliance Analysis. In the context of the DiplomaSafe use
case, four main points should be kept in mind: (a) the Data Subjects personal
data does not appear on the public, permissionless blockchain, (b) there is a Data
Controller that is responsible for the Data Subjects information in its original and
plain-text state and as such the Data Subject can exercise fundamental rights, such
as deletion thus rendering the data anonymous under the current guidelines set forth
by the article 29 Working Group (c) any security breach would be traceable to the
Data Controller, because this information would be embedded in the diploma and
(d) the Data Controllers in question would be continually responsible for ensuring
that the technology used is consistent with the technological developments, such as
computational effort.

In regard to point (a), the Data Subjects information does not as such appear in
the data set. As illustrated by the description of the local key-coded hash and upload
process, the only information available on the public, permissionless blockchain is
the key-coded hash. In isolation, the key-coded hash is [impossible] to glean a
Data Subjects personal data from. It would be improbable that it would even be
possible to glean whether there underlying data referenced any real data points or
was simply randomly generated.

In regard to point (b), it is important to remember, that the Data Controller(s)
– in this case the University or the employer who receives the CV still exists and
must uphold the principles set forth in the GDPR, irrespective of the key-coded
hash on the public, permissionless blockchain. In addition, if the University as the
original key-code hasher, were to respond to a request for erasure under Article 17,
the key-coded hash would no longer be technically traceable to the original Data
Subject and the underlying information. [The risk of linkability and inference would
therefore be severed.]

In regard to point (c), any breach of security would be traceable to the place of
breach of this information would be embedded in the diploma. Therefore, the Data
Subject would not forego the notification rights set out in the GDPR.

In regard to point (d), assurance is provided that Data Subjects personal infor-
mation will not thoughtlessly be subjected to the key-code hash process and up-
loaded to the public, permissionless blockchain without regard for the ever-current
state of technology as the Data Controller still is subject to the GDPR and thus
must continuously revisit what is “likely reasonably” give an increase in computa-
tional power, technological developments and other relevant information.

6



3 Consent Management Architectures
In this section we describe the architecture of a number of high level systems work-
ing towards solving the above described problems. We will consider a very general
usecase with just two primary actors: a data subject and a (potential) data con-
troller. Here the data subject gives consent for the data controller to the processing
of some personal data of the data subject. The data controller is given access to the
personal data which, providing consent was given, the data controller may process.
As per the GDPR rules the data subject should be able to revoke consent at which
point the data controller should stop processing the data (and delete it). The focus
of the systems sketched below will be on resolving any disputes that may arise be-
tween the data subject and data controller about whether or not consent for data
processing was given and/or revoked.

3.1 Naive Consent Management
As a baseline we outline how we consent management might work in a naive system.
In this setting the interaction is strictly between the data subject and the data
controller. The data subject gives consent to the data controller and then transfers
personal data directly to the data controller for processing. The concrete method
used to give consent could vary (e.g., the data subject clicks an “Agree” button
on a website). Regardless of the method, the consent given is only logged by the
two actors locally. In the case of disputes we must rely on the trustworthiness and
accuracy of the logs of the two actors in order to settle the dispute. Keeping and
managing such logs is not trivial (in particular for a private person acting as data
subject). If the parties fail it may result in inaccurate or lost logs. Furthermore,
the parties may tamper with their logs on purpose. This is obviously problematic
in the case of disputes as the logging performed by the two parties may well be
ambiguous (by change or malintent). I.e., in this setting it may be very difficult for
either party to argue their case in a dispute as the argument becomes word against
word.

3.2 Consent Management Using a Trusted Third Party
A basic idea to help resolve disputes between the data controller and data subject
would be to introduce a trusted third party. We denote this third party the consent
authority. In such a system, the data subject would register the consent given to
the data controller with the consent authority before transferring personal data to
the data controller. Similarly, the data subject should use the consent authority to
register revocation of consent. In either case it is the job of the consent authority
to log the consents given and revoked by data subjects. The data controller should
then refer to the consent authority in order to decide whether or not consent for
processing was given and/or revoked.

In case of a dispute the consent authority can settle the dispute between the two
parties by referring its logs. If the two parties accept the consent authority as the
authority on settling disputes this helps as we would no longer have the problem of
ambiguous logs.

However, this solution has new disadvantages. The consent authority becomes
a single point of trust. I.e., the solution pushes the responsibility of accurately
keeping the log of consents to this authority. Failure in keeping the logs will still
result in problems when solving disputes and if for some reason the service provided
by the consent authority becomes unavailable the whole system will fail to work.
Additionally, since the consent authority has essentially full control of the logs,

7



the parties must trust the consent authority to not tamper with the logs (possibly
influenced by the opposing party, e.g., via bribes).

Thus in this system the data subject and controller become highly dependent
on a single trusted party as the system is not robust to failures on the part of
the consent authority. Finding a trusted third party that the data subject and
controller both trust to act as consent authority can be difficult, and compensating
the authority for its service may well be costly.

We note that, it may be possible to reduce the required trust in the consent au-
thority using technical means, such as digital signatures and hash chains. However,
certain aspects of trust appear difficult to replace. For example, how to protect
against a consent authority that simply refuses to accept a consent revocation from
a data subject?

3.3 Consent Management Using a Blockchain
To solve the problem in the above system, we could imagine replacing the trusted
third party using a blockchain system. In fact, one of the main proposed advantages
of blockchain technology is to distribute the trust in a single trusted party (or a
few parties) over a network of parties maintaining the blockchain system. Such a
system would work similarly to the system using a trusted third party, only the
data subject registers his consent as a transaction (possibly a smartcontract?) on
a blockchain. Consent can then be said to be given once the transaction is settled
on the blockchain. The data controller should refer to the blockchain in order to
update is view of the state of consents.

3.4 Case: Consent Management Protocol
Based on the observations made in the previous sections, a consent management
protocol is here proposed.

3.4.1 Design Criteria

Here are listed the design criteria deemed necessary for a successful consent man-
agement protocol.

Indisputable Consent States
One can see the state of a consent relationship between a controller and a
subject as a binary matrix, where each row corresponds to a category of data
and each column corresponds to a method of processing. If a bit in the matrix
is 1, it means the controller has the consent to use a method of processing
corresponding to the column of the bit, on the category of data corresponding
to the row of the bit. If the bit is 0, this consent is either not given or has
been revoked.

The initial state is all zeros, and the only operation allowed on the matrix is
flipping exactly one bit, this operation can only be conducted by the subject.

The protocol should only allow operations such that the view of the matrix is
the same from the perspective of the subject and the controller.

A consent chain is defined as a chain of operations where the consent matrix
can be directly inferred by the state of the chain. It should not be possible for
one party to produce a consent chain, which the other party has not explicitly
agreed to and they cannot dispute.

Two Party Consent Chain
There are exactly two parties that should know the state of the consents: the

8



subject and the controller. To ensure this all protocol operations should be
either between the subject and the controller, or divulge no information on
the state of the consents.

Blockchain Consent Authority
In the case of an unresponsive, reluctant or malicious data controller, it should
be possible to have a third party acknowledge consents and objections. It
would be preferable to minimise the involvement of the consent authority,
as transaction fees might make involvement costly. Furthermore as per the
previous design criteria, as little information as possible should be divulged
to this consent authority, a protocol divulging only anonymous data would
make it possible to employ a public blockchain as the consent authority.

3.4.2 Protocol

Note here that operations as arguments constitute a hash of one such operation.

CollectionRequest(category, controller signature)
A request to collect the data of the provided category.

ProcessingRequest(CollectionRequest, method, controller signature)
A request to process the category of data described in the CollectionRequest
operation of the arguments, using the provided method.

Consent(CollectionRequest | ProcessingRequest | Object, subject signature)
The consent of the subject to either a collection request, processing request
or a change of mind of an earlier objection.

Object(Consent, subject signature)
An objection to an earlier consent.

Acknowledgment(Consent | Object, controller | registrant signature)
An acknowledgment of a given consent or objection, this can either be signed
by the controller or a trusted third party registrant.

Note here that CollectionRequest is the only operation that does not have a hash
pointer in its arguments, which in this case means that, any operation will either be
CollectionRequest or have one as their ancestor. An example of how this protocol
might unfold can be seen in Figure 1.

9



Request Collect

data0

Controller

Consent

Subject

Request Process

method0

Controller

Consent

Subject

Object

Subject

Acknowledgment

Controller

Object

Subject

Acknowledgment

Controller

Acknowledgment

Controller

Acknowledgment

Registrant

Consent

Subject

Request Process

method1

Controller

Consent

Subject

Object

Subject

Acknowledgment

Controller

Acknowledgment

Controller

Acknowledgment

Controller

Figure 1: An example of how the block structure of the protocol might progress.

Data Subject Rights
Here are highlighted the rights of the data subject as described in the GDPR, which
can be upheld by employing the protocol. Also shown is, how these rights can be
upheld through the operations of the protocol.

Right of Access
The data subject shall have the right to obtain from the controller confir-
mation as to whether or not personal data concerning him or her are being
processed, and, where that is the case, access to the personal data and the
following information:

(a) The purpose of processing
When issuing a ProcessingRequest operation, the data field of the block
can describe the purpose of processing.

(b) The categories of personal data concerned
When issuing a CollectionRequest the data field of the block can de-
scribe the categories of personal data concerned.

(d) The envisaged period for which the personal data will be stored
This can again be stored in the data field of the CollectionRequest.

(e) The existence of the right to request from the controller recti-
fication or erasure of personal data or restriction of processing
of personal data concerning the data subject or to object to
such processing
Implicitly supported by employing this protocol.

(g) Where the personal data are not collected from the data sub-
ject, any available information as to their source
This can again be stored in the data field of the CollectionRequest.

Right to Object
The data subject can, at any point, object to a previous consent given.
Whether the request is for collection or processing.

10



Right of Erasure
An objection to collection of a category of data is in the protocol equivalent
to a request for erasure, as this objects to any collection of this category of
data.

Right of Rectification
By objecting to the collection of the data that needs to be rectified, a collection
request can then be sent for the rectified data. This would require the removal
of erroneous data, the subject could then provide the rectified data.

Deriving Consent from the Consent Chain
We define R as a request, and Rd as a request of d, O is defined as an objec-
tion operation, C is defined as a consent operation, and lastly A is defined as an
acknowledgment operation.

The consent chain, which in this case is a tree with the root being a collection
request and nodes being operations, is defined as B. Two nodes {v, w} ∈ B have
the following relations and set operations

v < w if v is a descendant of w
v > w if v is an ancestor of w
v ≺ w if v is the child of w
v � w if v is the parent of w
<v the set of all ancestors of v
>v the set of all descendants of v
≤v the set v and all of its ancestors
≥v the set v and all of its descendants

For a subtree of consents, objections and acknowledgments, we can define the con-
sent as

SubConsent(T ) =¬ ∃
v∈T

[
v = R

]
∧

∃
a,c∈T

[
c = C ∧ a = A ∧ a ≺ c ∧

¬ ∃
v,w∈>c

[
v = O ∧ w = A ∧ w ≺ v

]]
Which in other words means that there should exist no other requests in the tree,
and there should exist an acknowledged consent with no acknowledged objections
in its descendants.

For a processing method or collection category d, and more specifically the request
thereof Rd, consent can be defined as:

Consent(Rd) = ∃
r,w∈T

[
r = Rd ∧ w ≺ r ∧ w = C ∧ SubConsent(≤w)

]
Using this we can define the consent of a category and method pair c,m as:

Consent(c,m,B) = ∃
v,w∈B

[
v = Rc ∧ w = Rm ∧ v � w ∧ Consent(v) ∧ Consent(w)

]

11



Dispute Resolution To resolve disputes between a subject and controller, on
the matter of consent of a processing method on a category of data, the two parties
can each produce a consent chain. The winner of the dispute will be the party which
can produce the longest acknowledged consent chain.

3.4.3 Case Conclusion

To conclude on the design of this protocol, the design criteria will here be revisited
and shown how they are achieved.

Indisputable Consent States
As described in the design criteria, it should be impossible to construct an
indisputable consent state that the other party has not agreed to.

Forkability
One way to produce to produce two differing states of a consent relationship,
would be to fork a consent chain. A chain is forked in the case where two
different operations point to the same previous operation, which would result
in two different consent chains depending on which tail of operations you chose
to follow.

A way to ensure that these chains cannot be forked, is by making sure append-
ing an operation to the chain is deterministic, i.e., only one unique operation
can be appended to any one consent chain.

Consent Chains
For a given request operation, there can exists a chain of consents and objec-
tions. This chain, as described in the protocol, is a linked list of alternating
consents and objections. For this list to be unforkable, appending an element
to it should be a deterministic process.

To prove this we look at the start of the chain. In the beginning there are no
consent or objections on, the chain is of length 0, as defined in the previous
section, this corresponds to a no consent state on the request.

As per the protocol, only a consent operation can be applied. The consent
operation holds three pieces of information: the hash code of the request,
a code corresponding to a consent operation, and a signature corresponding
to the other two pieces of information. All of these pieces of information are
unique. Constructing two different consent operations here are thus impossible
and cannot lead to a fork.

If applying an operation to a chain, the head of the chain is either an object
operation or a consent operation. Lets for example say that it is a consent
operation that is the head, only an object operation can be applied. The object
operation contains three pieces of information: the hash code to the head, a
code corresponding to an object operation, and a signature corresponding
to the other two pieces of information. Again all pieces of information are
deterministic and cannot lead to a fork.

Applying a consent operation follows the same argument as above, and as
such, is deterministic.

Acknowledgments are deterministic as well, but further applying operations to
a consent chain does not depend on them. There can be two acknowledgements
per operation on the consent chain, one by the controller and one from a
consent authority, but each operation need only be acknowledged once, and

12



as discussed it changes nothing about the determinism of the next operation
on the chain.

Requests
A request for collection of a category contains three pieces of information: the
category of data to collect, the collection request code, and a signature of the
controller. These are deterministic per category, thus it is impossible for the
controller to create two different requests for the same category.

A request for processing using a method on a category of data contains four
pieces of information: A hash code for the request of the category of data,
a processing request code, the processing method, and a signature by the
controller. Again are all values here deterministic for a category/method
pair, thus it is impossible for the controller to create two different requests for
the same category/method pair.

Two Party Consent Chain
As there is no way to fork the chain, there is no third party needed to reach
consensus on the state of consents. The controller and subject can hold the
chain themselves, and be sure that one party cannot change the state without
informing the other party. In the event of dispute, the party that can produce
the longest acknowledged chain wins.

Blockchain Consent Authority
If the consent authority is a smart contract on the Ethereum network[But13],
this smart contract can be designed to log and acknowledge consent and ob-
jection operations. If the smart contract is agreed upon by the subject and
the controller as the consent authority, the controller would then be obligated
to consult the smart contract to check whether there are consent or objection
operations logged on it that applies to one of their consent relationships.

The logged consent or objection operation contains only a hash code repre-
senting either a chain or a request, but it is impossible for anyone but the
subject or the controller to know which. This means that even though the
operation is public, the only information available is that someone either ob-
jected or consented to something, but not who consented or objected, and not
what they consented or objected to.

This renders the logging of a consent or objection anonymous from the per-
spective of the smart contract. More specifically this anonymity hinges on
whether or not the data subject can be connected to the entity logging the
operation. In the case that a data subject can be connected to the logged op-
eration, it is not possible for a third party to know what the logged operation
relates to.

This shows that it is possible to devise a protocol for consent management which
ensures appropriate rights of the data subject, and that it is in most cases sufficient,
for only the subject and the controller to be involved. The data structure for this
is inspired by blockchain design, and can be augmented using current blockchain
technology to ensure reliability in the face of an unresponsive, reluctant or malicious
data controller.

References
[Art14] Article 29 Data Protection Working Party. Opinion 05/2014 on anonymi-

sation techniques, 2014.

13



https://ec.europa.eu/justice/article-29/documentation/
opinion-recommendation/files/2014/wp216_en.pdf.

[Blo18] Blockchain and the GDPR. The european union blockchain observatory
and forum, 2018.
https://www.eublockchainforum.eu/sites/default/files/reports/
20181016_report_gdpr.pdf.

[But13] Vitalik Buterin. Ethereum: A next-generation smart contract and de-
centralized application platform. https://github.com/ethereum/wiki/
wiki/White-Paper, 2013.

14

https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf
https://www.eublockchainforum.eu/sites/default/files/reports/20181016_report_gdpr.pdf
https://www.eublockchainforum.eu/sites/default/files/reports/20181016_report_gdpr.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

	Introduction
	Use Cases
	Consent Management
	DiplomaSafe Digital Diploma Management
	DiplomaSafe Extended Architecture
	GDPR Compliance Discussion


	Consent Management Architectures
	Naive Consent Management
	Consent Management Using a Trusted Third Party
	Consent Management Using a Blockchain
	Case: Consent Management Protocol
	Design Criteria
	Protocol
	Case Conclusion



