
Blockchain and Privacy: Concepts and techniques∗

Working Group on Blockchain and Privacy
Innovation Network for Finance IT

2018/11/05 at 13:44:30

Abstract
This project investigates how blockchain technology can be made con-

sistent with GDPR and provide a platform for auditable GDPR-compliant
personal information management. The present report contains security and
privacy related concepts and techniques for managing personal information in
a blockchain technology context.

1 Introduction
The EU General Data Protection Regulation (GDPR)) [Par16] aims to protect con-
sumer privacy of EU citizens by enforcing strict regulations around the processing
of personal data. As such, it defines concrete rights for individuals to control and
restrict how their data is used, and sets out obligations and principles for those in
charge of processing.

The GDPR provides a legal framework for reasoning about personal data. How-
ever, in order to realize its requirements in practice, a practical analysis is necessary
as well.

For one, while the GDPR establishes terminology around data processing, many
of the terms are non-trivial to interpret in a modern computational context. This in-
terpretation however is necessary in order to inform the implementation of concrete,
compliant solutions.

Furthermore, though the GDPR lays out principles for data processing which
implicitly require capabilities on the part of those handling personal data, the tech-
nical means that provide these capabilities remain to be determined.

Finally, the GDPR ties some of its definitions to the state of the art in technology.
This applies to, for instance, defining appropriate standards for data protection.

It is therefore prudent to (i) establish an interpretation of the definitions pro-
vided in the GDPR from a computer science and technological state-of-the-art per-
spective], (ii) identify current and emerging technologies that deliver the required
capabilities and adequately honor the data processing principles laid out in the
GDPR, and (iii) determine to what extent emerging technologies may affect, con-
structively but also adversely, what is “realistic” in the context of GDPR.

In this report, we set out to address these points.
In particular, we summarize the terminology of the GDPR (§ 2), propose an

initial technical interpretation (§ 3), and finally explore solutions and technical
challenges pertaining to the GDPR in the context of two emerging technologies;
blockchain and distributed ledger systems on one hand, and privacy-enhancing tech-
nologies on the other (§ 4).

We note that this report represents only the personal opinions and views of the
authors and is provided “as is”.

∗Milestone 1 report (draft); for internal distribution only.

1



2 Terminology
The GDPR builds terminology around the processing of personal data. It defines
the rights of those contributing personal data, and sets specific obligations for those
handling it.

We focus on three key actors in the context of this report.

(i) Data Subject. An individual entrusting personal data to another entity for
processing.

(ii) Data Controller. The data controller determines how and to what end
personal data is processed within an organization. The data controller is re-
sponsible for ensuring compliance with the GDPR. If data is processed jointly,
across multiple organizations, the task of controlling how the data is processed
may be distibuted across multiple “joint controllers” (Article 26). An example
of a data controller is a private business providing a web-service.

(iii) Data Processor. The entity that performs the actual data processing, on
behalf of a data controller. The data processor, like the data controller, has
obligations within the GDPR. A data processor may, for instance, be a cloud
service provider.

Whenever personal data is gathered for processing, a data subject first provides
consent. A data subject can furthermore exercise rights to control his or her personal
data and gain insight into how it is being used.

(i) Right to rectification and erasure. A data subject may request the cor-
rection of erroneous data (Article 16) as well as its deletion (Article 17).

(ii) Right to withdraw consent. A data subject may at any time withdraw its
consent to data processing (Article 7). Note that this also entails subsequent
data erasure in most cases.

(iii) Right of access. A data subject may request information about his or her
personal data, including the purposes of its processing, data provenance, and
justifications for data-driven decisions made by a controller (Article 15).

(iv) Right to portability. A data subject may request his or personal data, as
well as the data’s transfer to another data controller (Article 20).

In order to ensure these rights, along with providing additional safeguards, data
controllers and processors must adhere to a set of core principles (Article 5). The
following are of particular interest in the context of this project:

(i) Fairness, transparency. These principles concern the data processing pro-
cedure. The controller must process data fairly, e.g., ensure that decision
making (automated or manual) does not involve undue bias. The controller
must ensure processing transparency, i.e., log all processing and make the
audit trail accessible to data subjects and other authorities where applicable.

(ii) Data minimisation, purpose and storage limitation. These principles
put limitations on data collection, distribution, as well as the duration for
which personal data can be stored. For instance, distributing personal data
for joint processing across multiple controllers must be done in a fashion that
minimizes data exposure.

2



(iii) Integrity, confidentiality, accuracy. The controller must employ proper
safeguards to ensure that personal data is not leaked/ accessed without au-
thorization, as well as data integrity (protect against e.g., loss, corruption,
accidental deletion). Furthermore, the controller must ensure that the col-
lected data is accurate and up to date.

(iv) Accountability. The controller is responsible for providing evidence of ad-
hering to the above principles.

Meeting these principles requires specific capabilities. We generalize these into
the following categories:

(i) Consent management. This includes obtaining proper consent from data
subjects, communicating (in an accessible way) what data processing steps
the consent applies to, and handling changes in consent, either on the side of
the data controller (e.g., re-requesting consent if data processing procedure
changes), or the side of the data subject (e.g., consent revocation).

(ii) Data modification. This includes updating/correcting records as well as
deletion.

(iii) Data protection. This includes (but is not limited to) (i) securing data
against data breaches, e.g., via encryption, proper employee training, authen-
tication mechanisms, (ii) collaborating with other data controllers/ processors
to remediate data leaks/ personal data becoming public, (iii) preventing ac-
cidental data deletion and ensuring service availability.

(iv) Logging. All data processing must be documented, and the resulting log
stored for archival purposes.

(v) Attestation. A data controller must be able to demonstrate (prove) facts
about the data itself, as well as about data processing, and consent manage-
ment. This includes demonstrating proper data subject consent, facilitating
audits, justifying decision making upon request, etc.

(vi) Notification. A data controller must implement means to notify affected
data subjects and relevant authorities of data breaches.

These capabilities come with qualifiers and conditions, e.g., “reasonable effort”,
and “taking into account the state of the art”.

Finally, personal data exists in one or more of the following states:

(i) Default. In its default state, personal data resides within a data controller’s
(or multiple joint controllers’) jurisdiction (possibly via delegate data pro-
cessors). The data is stored in its original form, i.e., no processing such as
pseudonymization or encryption has been applied to it.

(ii) Pseudonymous. Pseudonymous data can no longer be attributed to a spe-
cific data subject without the use of additional information, provided that
such additional information is kept separately and is subject to technical and
organisational measures to ensure that the personal data are not attributed
to an identified or identifiable natural person (Article 4, 5).

(iii) Encrypted. Data protected via encryption; the GDPR does not explicitly
state whether encrypted data is equivalent to pseudonymous data. In the con-
text of data breaches, the GDPR makes a clear distinction between encrypted

3



and default (unencrypted) personal data: if the leaked personal data was un-
encrypted, the data controller must inform all affected data subjects (Article
34, 2.), however, if the data was encrypted, this is not necessary (Article 34,
3. a.).

(iv) Public. This includes personal data that has been leaked or published. Per-
sonal data can be published by a data subject or a data controller (if given
consent). If the data has been leaked, the data controller is responsible for
remediating the issue by contacting other data controllers who have gained
access to the data and request its deletion.

Data can furthermore be anonymous. Data that has been anonymized does not
qualify as personal data anymore and therefore falls outside the scope of the GDPR.
The GDPR does not explicitly define means by which data can be anonymized.

3 Interpretation
From a technical perspective, the above terminology raises a number of important
questions.

Concepts such “deletion”, “reasonable effort”, or “pseudonymous” are by no means
trivial to define from a computer science perspective.

Such an analysis in necessary, however, as it informs the development of concrete
tools and procedures for GDPR-compliant data processing.

As a point of departure, we select several concepts and definitions introduced
in the previous section, propose preliminary interpretations from a computational
standpoint, and establish additional terminology. We further expand on these in
Section 4 where we discuss blockchain, distributed ledger, and privacy-enhancing
technologies.

Reasonable (computational) effort. The obligations outlined in the GDPR
are not absolute. For instance, to rectify leaked data, a controller must take “rea-
sonable” steps. By default and unless stated otherwise, we interpret “reasonable” to
maximally require no more than being computationally feasible. This mirrors the
modern cryptographic approach to defining and reasoning about security. Virtually
all cryptographic techniques and tools deployed in practice today assume that an
attacker has bounded computational resources; they do not (necessarily) protect
against attacks that are only hypothetically, but not realistically, possible by an
attacker with superpolynomial or even infinite computational power. We adopt this
view in this report, both in determining an upper bound to what constitutes rea-
sonable expectations towards data controllers and processors, as well as what levels
of security mechanisms are sufficient to meet the data protection capability. We
further discuss security definitions in Section 4.1.

Stored data. Data is not necessarily kept within a single, centralized storage
system. Rather, different approaches to distributed storage exist today, and must be
taken into account, as these raise the question of how much control any single data
controller has over a particular dataset. We consider two orthogonal dimensions of
distributed storage: replication and federation.

In replicated storage, a dataset is replicated across multiple (possibly thousands
or even millions) of machines. These machines may furthermore be decentralized,
that is managed by different data controllers that have no control over each other
or legally binding mutual business agreements and might even be anonymous. The
Bitcoin network [Nak08] is an example of a replicated storage system.

4



Federated storage provides a way to encode a dataset into multiple data points
such that a single data point reveals no information about the original data but
the joint data points can be decoded back into the dataset. Encryption and secret-
sharing (§ 4.1.3) are examples of such encodings. Once encoded, a dataset can
be federated across network of machines which furthermore may be decentralized,
that is managed by different, mutually independent data controllers. In this case, no
single data controller (or delegate data processor) has access to the original dataset.

Note that replication and federation can be combined.
In order to address the fact that data storage can be distributed, we introduce

the notion of data views.

Data view. A data view consists of a dataset and a set of controllers (this
may be a single controller or a group of controllers). A data view defines (i) the
state of the dataset (e.g., anonymous, pseudonymous, default, etc.), given only the
information the controllers in the group hold, and (ii) the control the controllers
hold over the data, in particular the ability to delete or modify the dataset. This
allows us to reason about distributed storage scenarios.

For instance, suppose a single controller (accidentally) leaks personal data to
a replicated storage system such as the bitcoin network. The data view of that
controller states that (i) the dataset is public (since, in principle, anyone now has
access to it), and (ii) the controller does not have the ability to modify or delete the
dataset. Note that the data view of the entire network (or a large enough fraction
of it) supporting the replicated storage system does offer the ability to delete and
modify the data.

On the other hand, suppose that a controller encrypts the dataset, and stores
the data only in encrypted form. Additionally, the controller sends the ciphertext
(but not the encryption key) to another controller. In this scenario, there are two
relevant data views to consider, that of the sender and that of the recipient con-
troller. The sender’s data view states that the data is encrypted and can be both
modified and deleted. The recipient’s data view is that the data is anonymous (and
therefore not personal) since the ciphertext alone does not reveal any information
about the dataset. (We expand further on this discussion in our interpretation of
the various data states.) Furthermore, the data view of the recipient provides no
ability to modify or delete the data.

Deletion. We interpret deleted data as data that is not recoverable with rea-
sonable computational effort. A straight-forward example is unreplicated data that
has been erased from disk. However, more nuanced mechanisms for making data
unrecoverable exist. For instance, encrypting a dataset and erasing the encryption
key from disk is, arguably, equivalent to complete data erasure.1.

Replicated, decentralized storage brings about another issue in regards to data
deletion. Due to the lack of a central data controller, and the underlying system
design (and purpose), systems such as Bitcoin make it computationally difficult to
erase records. Should personal data be stored (either maliciously or accidentally)
in such a system, it is not realistic to require a single data controller to affect its
erasure, since the controller’s data view does not permit it. Article 17 of the GDPR,
at least indirectly, accounts for this scenario (note italicized text):

Where the controller has made the personal data public and is obliged
pursuant to paragraph 1 to erase the personal data, the controller, tak-
ing account of available technology and the cost of implementation, shall

1This is a somewhat nuanced issue, since theoretically the encryption mechanism, while unbro-
ken at the time on encryption might be broken in the future, in which case the ciphertext could
be used to infer information about the underlying data.

5



take reasonable steps, including technical measures, to inform controllers
which are processing the personal data that the data subject has re-
quested the erasure by such controllers of any links to, or copy or repli-
cation of, those personal data.

Removing records from certain types of replicated storage goes beyond reason-
able computational effort.

We further use the notion of data views to interpret the different states of data
defined in the GDPR. As previously mentioned we consider the state of data as con-
tingent upon a specific data view. Here, we focus on three data states: encrypted,
anonymous, and pseudonymous.

Encrypted data. A dataset is encrypted, given the data view of a specific con-
troller, if it has undergone encryption2 and the controller holds both the encryption
key and the ciphertext, i.e., the controller is able to decrypt the data. Likewise,
the (joint) data view of two controllers of a dataset, where one controller holds the
encryption key and the other the ciphertext, classifies the data as encrypted (since
the two controllers jointly hold all information necessary to decrypt). The data
view of a controller only holding a ciphertext but not the corresponding encryption
key or vice versa, defines the data as anonymous.

Anonymous data. We define anonymous data as data from which personal
data cannot be derived with reasonable computational effort3. A trivial example Deriving how

much personal
data, not even
a single bit?

Deriving how
much personal
data, not even
a single bit?

is data without any linkage to personal data, e.g., a public dataset that does not
contain any personal information, or randomly generated data.

The data view of a controller holding a ciphertext, without the corresponding en-
cryption key, is a more nuanced example. The ciphertext in isolation is anonymous
data since it reveals no information (unless it is possible to break the encryption
scheme) about the original dataset.

Pseudonymous data. We interpret pseudonymous data as data which only
provides a marginal (and furthermore quantifiable) advantage at inferring any addi-
tional information about personal data. Differential privacy [DMNS06] is a strong
candidate as a concrete mechanism for achieving pseudonymization. According to

a EU report
it is classi-
fied as an
anonymization
technique. Is
pseudo/anonymization
a gliding scale
of quantitative
measures –
intuitively not
either-or but
a question of
how many bits
are revealed–
indexed by
views and
the degree
of control
()colusion,
collaboration)
view holders
have?

According to
a EU report
it is classi-
fied as an
anonymization
technique. Is
pseudo/anonymization
a gliding scale
of quantitative
measures –
intuitively not
either-or but
a question of
how many bits
are revealed–
indexed by
views and
the degree
of control
()colusion,
collaboration)
view holders
have?

4 Relevant Technologies and Concepts
In this section we survey computational security and privacy concepts and tech-
nologies that pertain to the GDPR. In particular, we seek to expand on our in-
terpretation from the previous section, and determine (i) how privacy-enhancing,
blockchain, and distributed ledger technologies can help realize the necessary con-
troller capabilities and ensure compliance with the GDPR’s data processing princi-
ples (cf. § 2), and (ii) what other implications these technologies have on meeting
GDPR compliance.

4.1 Cryptographic Security and Privacy
In the cryptographic literature security of a system (such as an encryption algo-
rithm) is defined relative to the capabilities of an assumed adversary trying to

2We only consider encryption algorithms that are standardized (e.g., AES [NIS01]) and/ or
deemed secure by the academic community (e.g., Shamir secret-sharing [Sha79]).

3More formally, we define anonymous data as data which does not provide an advantage at
inferring any information about personal data over random guessing.

6



break the security properties of the system. In particular, two settings distinguish
themselves, namely the information theoretic and the computational setting.

In the information theoretic setting we assume an adversary that has unbounded
computational resources, i.e., can compute infinitely fast and hold infinite amounts
of data in its memory. Security in this setting can be divided in two categories,
perfect- and statistical security. Perfect security, meaning that security cannot
be broken, i.e., even with unlimited computational resources, an adversary cannot
break security of the system in any way. Statistical security, on the other hand,
means that the adversary may be able to break security of the system but only
with some probability which is independent of the computational resources of the
adversary. Specifically, the probability of breaking security is governed by a system
parameter called the statistical security parameter, which can be set to make this
probability arbitrarily small.

In the computational setting we assume an adversary that has bounded com-
putational resources. I.e., systems secure in this setting are theoretically possible
to break, but doing so it requires some amount of computational resources. The
amount of computational resources required is governed by a system parameter
called the computational security parameter. This parameter is then tuned so that
breaking security is assumed to require an enormous amount of resources, far ex-
ceeding what any real adversary can realistically be expected to possess. Note
that statements about security in the computational setting are typically relative
to hardness assumptions about certain computational problems; e.g., that factoring
large numbers requires an in inordinate amount of computational resources to solve.
We then show that breaking security of our systems is at least as hard as solving
the computational problem. This means that if new techniques are developed for
solving the underlying problem that disproves the hardness assumption this may
effect the security of the cryptographic system. For this reason we prefer to rely on
well studied hardness assumptions.

Thus, the fundamental difference between the two settings, is that in the infor-
mation theoretic setting, we are essentially guaranteed that no amount of technical
breakthroughs will invalidate the security of the system. Whereas, in the computa-
tional setting, breakthroughs in the methods used to solve the underlying computa-
tional problems may invalidate our hardness assumptions and consequently weaken
the security of the system.

As discussed in Section 3 we generally consider protecting personal data using
systems with security in the computational setting as a “reasonable” effort in the
terms of GDPR. However, security in the information theoretic setting does raise
some interesting questions in relation to GDPR requirements.

4.1.1 One-way functions (cryptographic hashing)

Cryptographic hash functions are a basic building block of many cryptographic
systems, including most blockchain systems. A hash function is a deterministic
function that takes any piece of data an produces a short representation of the data
of some fixed size called a hash. A cryptographic hash function is a hash function
where: (i) given a hash value it is computationally infeasible to produce some data
with the same hash value faster brute force, i.e., we can not do better than try to
guess the original data and test if the hashes match (ii) given some data and its
hash value it is infeasible to produce a different piece of data resulting in the same
hash value.

Property (i) above seems to sugest that a hash hides the original data and thus
that a hash is anonymous. However, one should be careful with this view as it
largely depends on wether a brute force attack against the hash is feasible. This
may be the case if an attacker has additional knowledge about the hashed data.

7



For example, if the hash represents a phone number an attacker may “simply” check
the hash value against the hash value of all phone numbers in order to reverse the
hash.

4.1.2 Trapdoor functions (encryption)

We have already covered encryption in relation to the GDPR in some detail above.
Here we will just try to explain some of the termonology around the technology.

One typically distinguishes two distinct types of encryption, symmetric and
asymmetric encrypt (also known as secret and public key encryption). A symmet-
ric encryption algorithm is randomized algorithm that takes some message and a
key parameter and produces a ciphertext. For the encryption algorithm to be se-
cure we, roughly speaking, require that the ciphertext alone does not reveal any
information about the message. This includes not being able detect whether two
ciphertext produced using the same key are encryptions of the same message. Given
a ciphertext and the key used to encrypt it should however be possible decrypt the
ciphertext and completely recover the message.

An asymmetric encryption algorithm is similar except that encryption uses a
special encryption key and decryption uses seperate decryption key. The encryption
key is then considered to be public while the decryption key is kept secret by a single
party.

4.1.3 Secret sharing

Secret-sharing is a cryptographic technique for secure, federated data storage, for-
malized in seminal work by Shamir [Sha79].

Conceptually, a secret sharing algorithm encodes a secret data point v into
multiple shares such that (i) given all 4 shares, it is possible to reconstruct the
secret v, and (ii) an incomplete subset of shares reveals no information 5 about v.

Thus, if we split a secret into shares and distribute the shares across multiple
servers, no single server stores the secret value, and all servers must collaborate to
reconstruct it.

In relation to the GDPR secret sharing provides of data protection when storing
personal data. Namely, secret sharing can be used to protect data within the
organization of a data controller, by secret-sharing the data across multiple (possibly
isolated) servers. This way an attacker has to compromise all servers in order to gain
access to the private data. Taking this idea further, the servers could be federated
across multiple data controllers. Considering this setting raises interesting questions
in the context of the GDPR.

In particular, in this case no single data controller (without collaborating with
others) has access to the original data. In other words, the data view of any in-
dividual data controller (or an incomplete subset) holds no information about the
original data, but the data view of the entire set of controllers hold full information
on the shared data.

In such a setup secret-sharing could be seen as mean of data minimization as no
individual data controller would have any information on original data. However,
one could also argue that, the data held by any single data controller could be
interpreted as effectively anonymous. Note, this follows from the same logic that
leads us to conclude that a ciphertext is anonymous data in the view of a data
controller that does not hold the corresponding key. Does this then mean that
secret-shared personal data is outside of the scope of the GDPR? And could a data

4More flexible schemes also exist which allow a secret to be reconstructed given only a subset
of shares.

5Apart from leaking a bound on the bit length of v.

8



controller entrusted with personal data then secret-share this data with external
parties without the consent of the data subjects? We revisit this discussion in
Section 4.1.4.

While a fascinating technique in its own right, secret-sharing also forms the
basis for an even more powerful cryptographic primitive, namely secure multi-party
computation (4.1.4) which enables computing on secret-shared data.

both compu-
tational and
information-
theoretic se-
cret sharing
schemes exist

both compu-
tational and
information-
theoretic se-
cret sharing
schemes exist

4.1.4 Secure Multi-Party Computation (MPC)

Secure Multi-Party Computation (MPC), just as secret-sharing, has its roots in
theoretical work dating back over thirty years [Yao86]. Whereas secret-sharing
securely federates data storage, MPC securely federates data processing. At a high
level, MPC allows multiple servers (each potentially hosted by a different data
controller) to jointly perform a computation, without ever learning the data on
which the computation is done.

The applications of MPC are broad, and the past decade has seen several suc-
cessful deployments []. For instance, MPC was used recently to compute the gender
pay gap–the difference in earnings of male versus female employees–across a large
portion of privately-held businesses in the City of Boston []. The businesses pro-
vided their employees’ income records as inputs to the multi-party computation,
and learned the total earning figures without revealing individual employee records
or even sub-totals of individual businesses.

While there exists a number of different MPC schemes, one of the most practical
and conceptually accessible approaches is based on secret-sharing (cf. for instance
[]). This approach provides cryptographic protocols for computing on secret-shared
data. Once values have been secret-shared across multiple servers, the servers can
jointly compute a secret-shared result of any function on original values, for in-
stance, some statistic on the values, as in the examples above. The servers do so
by manipulating their shares of the original values and, crucially, without ever re-
constructing any of the original data or any intermediate data resulting from the
processing. Thus, throughout the entire data processing, the underlying data re-
mains secret-shared. At the end of the computation, each participating server stores
a share of the result. The servers can use these shares to reconstruct the result of
the data processing.

As data processed using MPC is always secret-shared, MPC offers capabilites
in terms data protection similar to those discussed for secret-sharing. Only, MPC
extends the protection offered by secret-sharing, from data while stored to include
data while being processes. I.e., with MPC a data controller using secret-sharing
across multiple servers to protect stored personal data, would never have to recon-
struct the data in a single location, not even while processing. Also, consider two
or more data controllers each holding seperate data sets but requiring to process
on the union of their data sets (such as the businesses holding salary and gender
information of their employees in the example above). This processing could be
done by the data controllers first secret-sharing their individual data sets and doing
the processing using MPC. In such collaborative data processing MPC represents
a very strong form of data minimization, as no personal data is ever exchanged
between the data controllers during processesing.

In fact taking the view of data secret-shared between data controllers as anony-
mous, as discussed above, this means that the data controllers would only be pro-
cessing anonymous data. Thus, MPC offers the desireable capability to anonymize
and process data without loosing any utility of the data.

It is important to note that MPC protects the data that is being computed on;
it does not protect any reconstructed result of the computation. For instance, if in

9



the aforementioned gender-pay gap study the computed result was the name and
salaries of the top five earning employees across all companies, this would obviously
reveal personal information. In the MPC literature this is referred to as output
leakage. While the above example is an extreme case, one can envision far more
subtle cases of a computation result inadvertendly allowing infer personal data.
Output leakage must therefore be taken into account when evaluating MPC and its
relation to the GDPR.

4.1.5 Zero-Knowledge Proofs

Zero-knowledge proofs (ZKP) (first proposed by Goldwasser et al. [GMR89]) is a
type of protocol that allows one party (the Prover) to prove a statement to an other
party (the Verifier) so that: (i) the verifier will be convinced by the proof if the
statement is true, (ii) the prover can not fake a proof to prove a false statement,
(iii) by seeing the proof the verifier learns nothing but the statement.

As an illustration, consider a customer at a bar wanting to prove to the bartender
that he is over the legal drinking age. He may do this by presenting identity-
papers stating his birth date to the bartender (such as a passport). This proof
would argueably have properties (i) and (ii) described above. However, since the
bartender would learn not only that the customer is over the drinking age, but the
exact age of the customer, property (iii) does not hold. If instead the customer
used a ZKP to prove the statement “my age is larger than the drinking age” the
bartender would learn no other information from the proof.

An important application of ZKP’s is to prove that some value was computed
following some specific rules of correctness. From a privacy perspective this is
interesting in a setting where a verifier needs to learn some function on the provers
private data, but does not require the private data it self. I.e., a prover may use
ZKP’s to prove that some value y is the result of applying a given function f to
private data x.

In cryptocurrencies this idea is currently being used to provide transaction pri-
vacy. In most cryptocurrencies (e.g., bitcoin) all transaction data must be public in
order for the system to validate the correctness of each transaction. This specifically
means the addresses of the sender and the receiver and the amounts of all trans-
actions are made public. However, using ZKP’s, we could encrypt the transaction
data, and then simply prove that the encrypted transaction is valid (i.e., that it
does not spend money the sender is not entitled to spend). This idea lies behind
certain privacy preserving cryptocurrencies, most notably the ZCash system.

In context of the GDPR, ZKP’s could also be used generally as a data disclosure
minimization technique. Namely, in cases where a data controller is required to
validate some claim about the personal data of a data subject, it may be sufficient
for the data subject prove the claim using a ZKP rather than to present the personal
data to the data controller.

10



4.2 Language- and systems-based security and privacy tech-
niques

4.2.1 Data provenance tracking

4.2.2 Information flow analysis

4.2.3 Trusted execution environments

4.2.4 Differential privacy

5 Blockchain and distributed ledger technology
The term blockchain has its origin in the data structure used to store a log of
transactions whose state is replicated in an open network of nodes employing a
peer-to-peer gossip protocol. As such, it is a specific data structure for achieving
a particular purpose, the atomic transfer of Bitcoin between anonymous parties
without an appointed trusted organization controlling the process.

In this section we step back and propose general functional characteristics of
blockchain and distributed ledger systems, including systems not built yet. It is anal-
ogous to describing the notion of automobile from a functional perspective rather
than a particular engine technology. If Bitcoin is the Ford Model T of blockchain/DL
systems, then the description should include it as an instance, of course, but also
diesel-driven vans and self-driving electric-motor driven cars should be captured;
they share “architectural” aspects, but are technologically very different.6

5.1 A blockchain/distributed ledger ontology
A blockchain system is a distributed system for managing digital (representations
of) resources with certain characteristics and goals. In this paper we attempt to
deconstruct blockchain systems into conceptual components so as to derive a canon-
ical ontology and architectural components for discussing, designing and analyzing
blockchain systems. We begin with a basic ontology. It is meant to be sufficiently
stringent and connotative to facilitate a basic discourse without being too restrictive
or formalized to discourage meaningful discussion.

5.1.1 Distributed systems

A distributed system is a network of (computer) nodes, each running some program
that can receive and sendmessages to/from other nodes and from client (computer)s
via network connections. Collectively, a distributed system offers a designated ser-
vice to its clients via an interface, the kinds of messages it receives and sends.

A node can be thought of as a stateful object : it has an internal state that may
change and cause messages to be sent as a consequence of receiving messages and
of internal activities. The state is not shared with any other node; sharing needs to
be explicitly modeled as a separate node or as a distributed (sub)system in its own
right. A node is reactive (event-driven) if its state only changes as a consequence
of messages received; that is, it has no active threads of computation that change
its state without being initiated by receiving a message. A node is controlled by
an agent (see below), its node operator. A distributed system is (organizationally)
centralized, if all its nodes are controlled by a single agent. It is decentralized if
its nodes are controlled by a dynamic group of agents that are not, themselves,
controlled by a single agent or colluding to act like a single agent. A node may
suffer a crash fault (become non-responsive) or even a Byzantine fault (does not

6E.e., proof of work is a specific Bitcoin aspect, but does not occur in other blockchain/DL
systems, just as spark plugs are not parts of electric motors.

11



follow the agreed upon protocol). A distributed system may or may not tolerate
crash faults and Byzantine fault, that is still provide its service to a high degree
in the presence of crash or even Byzantine faults. A decentralized system may
furthermore be exposed to Sybil attacks, where a group of agents takes over or adds
a large number of network nodes to comprise the system’s service by large-scale
Byzantine faults.

Messages are usually classified into queries, responses and commands. A query
results in a response that is sent by the query receiver to the query sender. Queries
furthermore do not change the state of a node: the same query received multiple
times yields the same response if no command is received in between. Commands
generally update the state. The separation into query/response pairs and commands
constitute the basic building blocks of CRUD-based and RESTful programming.

5.1.2 Resources, agents, contracts and events

Blockchain systems deal with (digital representations of) economic events and at-
tendant information exchange. We find it useful to employ the Resources-Events-
Agents (REA) accounting model, its basic terminology and its subsequent refine-
ments, extensions (with information, location, independent perspective, structured
contracts and additions in this paper) and formalizations in our discourse, which
we collectively call the Resources-Agents-Contracts-Events (RACE) model.7

A resource is something physical or ideal that is economically scarce such as
money/currencies, assets, physical resources (such as trucks, houses, dog food),
property ownership, usage licenses, etc. A resource may be unique (the Guernica
painting) or fungible (14 liters of milk, a dozen bagels). The characteristic property
of a real-world resource is that it is hard to copy cheaply by nature (a truck) or by
design (money).8

A piece of information is something physical or digital that is economically
plentiful such as a message on a bulletin board, an invoice, a picture, etc. The
characteristic property of information is that it is easy to copy cheaply.

An agent is a natural person or organization such as a company or division of
such.

An event is a significant, atomic change of the state of the world occurring at
some point in time; it includes occurrences of the following actions performed by
agents:

• a transfer of some resource from one agent to another, e.g. Alice giving Bob
50 BTC;

• a transformation of some resource into another resource by an agent, e.g. Char-
lie producing a bicycle from all its parts or the National Bank of Denmark
transforming part of its exclusive license to issue money into physical cash;

• a communication of some information from one agent to another, e.g. Bob
sending Alice an invoice;

• a conclusion by some agent of output information from some input informa-
tion, e.g. Charlie concluding that he has to pay 100 BTC from two open
invoices of 50 BTC each.

• an observation by some agent of some information; e.g. Bloomberg observing
that the price of IBM stock hit USD 146.1 June 8th, 2018.

7The abbreviation of the alternative Resources-Events-Agents-Contracts is somewhat unfortu-
nate.

8We may use the term linear resource for emphasis to minimize the confusion with uses of
“resource” in IT such as in RESTful programming, where it corresponds to stored information.

12



We can describe the state of the world in terms of statements of ownership and
knowledge and characterize the effect actions have on the state of the world. If
Alice owns 80 BTC and Bob 20 BTC and Alice transfers 50 BTC to Bob, Alice
owns 30 BTC and Bob 70 BTC afterwards. Notice that the sum of what they own
hasn’t changed: the resources in the world before and after the event are the same.
In particular, after sending the 50 BTC she doesn’t own them any more. This is
in contrast to communication: If Alice knows that IBM stock hit USD 146.1 June
8th, 2018 and communicates this information to Bob, both Alice and Bob know it
afterwards. The information has been duplicated.

Not all actions are valid in every state of the world. For example, if Alice’s credit
limit is 0—she cannot borrow anything—she cannot transfer 50 BTC to Charlie after
transferring them to Bob above; in particular, she cannot double-spend the 50 BTC.
Similarly, if she doesn’t know anything about IBM’s stock price, she cannot inform
Bob of IBM’s stock price as if it were a fact. Though, if Bloomberg first observes
IBM’s stock price and then informs Alice of it, she can subsequently inform Bob of
it.

A contract is a specification of which actions a group of agents is permitted,
obliged and prohibited to perform at which time, in which order und under which
circumstances. At its core, a contract is an agent-independent classifier of collec-
tions of events: Given a (possibly hypothetical) collection of events, it classifies
it as either constituting a correct and complete execution or not. Being agent-
independent means that the classification should be objective: it should not depend
on a particular agent performing it.

Using the term contract is motivated by the conventional notion of (paper)
contract, but its interpretation as an event collection classifier goes beyond this.
Depending on the setting and compositional structure we may call a specification
of such a classifier also a business rule, policy, mechanism or protocol.

For anonymization, authentication, authorization and other reasons we may use
globally unique identifiers where entities such as resources, agents, events, con-
tracts, nodes, are required etc. Their mapping to actual entities is dynamically
managed by an identity management system, which may be distributed itself. A
blockchain/distributed ledger system can be characterized by the following proper-
ties:

5.2 Blockchain/DL characteristics
We pose that blockchain/DL systems are characterized by the following properties.

Organizational and technical decentralization: It is a distributed system whose
nodes are controlled by a dynamic group of independent principals (organi-
zations), each of which ideally has the same access to and control of the
blockchain system.

Tamper-proof shared storage: It maintains a ground truth of shared facts (con-
sistency), which are furthermore immutable (tamper-proof).

Forge-proof digital resource management: It guarantees that (digital repre-
sentations of) assets (resources) can be stored and transferred, but neither
duplicated nor lost.

Specifically, organizational and technical decentralization involves an open ("per-
missionless") or closed ("permissioned") group of agents (parties, companies) that
have equal data access, update and administrative control rights to a peer-to-peer
distributed system; in particular, there is no privileged information aggregator and
process owner (in particular no cloud hosting provider with privileged insight into

13



the information streams of its users). Tamper-proof recording of events is a tech-
nical guarantee against tampering with recorded information, including deleting it.
Recorded events establish a joint ground truth across all agents. It thus includes
comprehensive reconciliation of inter-organizational information and establishes de-
pendable provenance of information and resources across arbitrarily long supply
chains. Forge-proof digital resource management means that resources such as fiat
money, cryptocurrencies, property rights, licenses, (proxies for) arbitrary physical
resources (trucks, components, plants, cement bags, cancer medicine,...) can be re-
liably stored and transferred digitally. The system has built-in guarantees against
duplication (forging) of resources. This provides the equivalent of having a purely
digital “original” certificate of anything of value and establishing who, uniquely,
owns it at any given point in time.

Figuratively, a blockchain/DL system is the equivalent of a direct democracy
involving many individuals spread over a large geographic area with no leaders or
hierarchy, yet such that it collectively behaves reliably like a single organization
that stores resources (who owns what), gives consistent (the same) answers no
matter who amongst its (honest) members is asked, and works effectively even when
there are failing, cheating or even actively attacking individuals forming gangs (and
inventing identities of individuals).

There are various inherent distributed systems trade-offs between consistency,
responsiveness, tolerance of network (communication) failures, degrees of resilience
to failing, cheating members and to ballot-stuffing inside the organization, between
privacy and performance. These preclude a single design of a blockchain/DL sys-
tem being best at everything. There are many possible different designs; any one
of them is technically complicated, and they all are different under the hood from
centralized/cloud-hosted database systems, which most software engineers and de-
velopers are trained to deal with.

5.3 A brief review of blockchain and distributed ledger sys-
tems

We briefly describe the essential parts of some popular blockchain systems.

5.3.1 Bitcoin

The Ford Model T of blockchain systems is Bitcoin. It is an open network of
self-authenticating replicated state machines collectively maintaining a list of trans-
actions. Each transaction consists of a number of inputs and outputs, the latter
with associated nonnegative amounts of its cryptocurrency, Bitcoin; a transaction
is valid if each of its inputs refers to an output of a previous transaction that has
not been spent (used as input by another transaction) yet such that an efficiently
checkable predicate holds and the sum of Bitcoin at its inputs is equal to the sum
of Bitcoin amounts the transaction associates with its outputs. The predicate in
question is typically proof of knowledge of the private key corresponding to a public
key serving as an anonymous identity (“address”) that a Bitcoin transfer is made
to. Bitcoin employs a decentralized lottery where a node needs to compute a nonce
(a winning ticket) to prove itself as legitimate validator of a new block of approxi-
mately 1,000 transactions that it then sends to other nodes. Nodes are incentivized
economically to extend the longest sequence of already validated blocks by receiving
Bitcoin for block validation so that the nodes converge on a single chain of blocks.

14



5.3.2 Ethereum

Ethereum employs Bitcoin-like blockchain storage. Whereas in Bitcoin the behav-
ior of an agent controlling an address is opaque, in Ethereum it is possible to tie
an address to a reactive object with explicit, immutable code (“smart contract”)
that receives and sends messages and transfers of its own cryptocurrency, Ether,
according to its semantics.

Both systems are intended to work in an open, anarchistic setting: any node
and any address can participate; network nodes and users controlling an address
authenticate themselves. No permission from any authority is required. Byzan-
tine and Sybil attacks are countermanded by making it computationally extremely
expensive to construct any valid chain of blocks and rewarding convergence on a
single chain of blocks, which is then considered the “real” one.

5.3.3 Corda, Fabric and other distributed ledger systems

Blockchain subsequently received much attention as a decentralized platform for
establishing (normative) consensus on a sequence of events amongst authenticated
nodes and agents, especially in the financial sector where resources (money, bonds,
etc) are essentially purely digital. Since payment for operating a node and re-
course in case of cheating can be handled outside the blockchain system, such
distributed ledger systems are typically designed employing classical distributed
systems techniques, without cryptocurrencies for incentivizing correct behavior and
without paying for computation. For example, Corda employs an architecture where
authenticated nodes send information to each other privately (point-to-point) and
only transfers of resources are validated by employing a small set of trusted valida-
tor nodes to establish a global total order on all requested resource transfers. The
private messages are, a priori, only available to the sender and receiver; Corda has
functionality for cooperatively collecting private messages and validated resource
transfers to prove to each other or a third party whether a sequence of events
abides by a designated protocol (“flow”) such as a financial contract. If a node
fails or refuses to participate in this phase, this may fail. Similar to Corda, Hyper-
ledger Fabric employs an ordering service to globally and totally order functional
(deterministic) update requests to the shared state of the world, which are then
propagated and applied in that order by all peers in the system to update the state.
In contrast to Corda, but similar to Bitcoin and Ethereum, Fabric nodes are, a
priori, replicated state machines that can see all messages of amongst any nodes.
(Partial privacy is regained by organizing the network hierarchically: a channel is a
Fabric network in its own right, and each such channel participates as a single node
in a higher-level network such that all intra-channel messages are kept secret from
other channels.)

6 Open questions and problems
Here we identify key challenges related to the GDPR.

1. Illegal (private) content revocation/ removal in the context of public blockchains

7 Appendix

7.1 Technologies Supplementary Material
As a concrete illustration, consider the following scheme, referred to as additive
secret-sharing. Suppose we want to split a value v into three shares. We generate

15



two random values (of the same bit length as v) s1, and s2. We then compute a
third value s3 = v ⊕ s1 ⊕ s2. The three values, s1, s2, and s3 represent our shares.
Given all three shares, it is possible to reconstruct v, since v = s1 ⊕ s2 ⊕ s3. Any
subset smaller than three, on the other hand, does not reveal anything about v
(TODO: elaborate, effectively one time pad).

A note on the relation between encryption and secret-sharing. Symmetric
key encryption is a special case of secret-sharing: the encryption key represents one
share, and the ciphertext the other. The key alone does not reveal anything about
a cleartext value, and neither does the ciphertext. However, given both the key and
the ciphertext, it is possible to decrypt and obtain the original value.

Secret-sharing generalizes this notion. Instead of two shares (key and ciphertext)
there can be arbitrarily many shares.

7.2 Important GDPR Articles
Article 17, 2. Where the controller has made the personal data public and is
obliged pursuant to paragraph 1 to erase the personal data, the controller, taking
account of available technology and the cost of implementation, shall take reasonable
steps, including technical measures, to inform controllers which are processing the
personal data that the data subject has requested the erasure by such controllers
of any links to, or copy or replication of, those personal data.

Article 5, 1. b. [...] collected for specified, explicit and legitimate purposes
and not further processed in a manner that is incompatible with those purposes;
further processing for archiving purposes in the public interest, scientific or
historical research purposes or statistical purposes shall, in accordance with Article
89(1), not be considered to be incompatible with the initial purposes (’purpose
limitation’);

7.3 Misc
Concordium [] aims to integrate solutions for revoking illegal content into its blockchain
system.

References
[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Cal-

ibrating noise to sensitivity in private data analysis. In Theory of cryp-
tography conference, pages 265–284. Springer, 2006.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on computing,
18(1):186–208, 1989.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[NIS01] Fips pub 197, advanced encryption standard (aes), 2001.
U.S.Department of Commerce/National Institute of Standards
and Technology.

[Par16] Parliament and Council of European Union. Regulation (eu) 2016/679
of the european parliament and of the council, 2016.
http://data.europa.eu/eli/reg/2016/679/oj.

16

http://data.europa.eu/eli/reg/2016/679/oj


[Sha79] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Foun-
dations of Computer Science, 1986., 27th Annual Symposium on, pages
162–167. IEEE, 1986.

17


	Introduction
	Terminology
	Interpretation
	Relevant Technologies and Concepts
	Cryptographic Security and Privacy
	One-way functions (cryptographic hashing)
	Trapdoor functions (encryption)
	Secret sharing
	Secure Multi-Party Computation (MPC)
	Zero-Knowledge Proofs

	Language- and systems-based security and privacy techniques
	Data provenance tracking
	Information flow analysis
	Trusted execution environments
	Differential privacy


	Blockchain and distributed ledger technology
	A blockchain/distributed ledger ontology
	Distributed systems
	Resources, agents, contracts and events

	Blockchain/DL characteristics
	A brief review of blockchain and distributed ledger systems
	Bitcoin
	Ethereum
	Corda, Fabric and other distributed ledger systems


	Open questions and problems
	Appendix
	Technologies Supplementary Material
	Important GDPR Articles
	Misc


